Smart-Contract Protocols: Theory for Applications

(PROCONTRA)

STEFAN DZIEMBOWSKI

UNIVERSITY OF WARSAW
Transfigure a new discipline called smart-contract protocols into a mature science.

This will be done by:

1. establishing its foundations, and
2. proposing new constructions in it.
Contracts

Legal contracts – **ambiguous**:

Standard practices:
- Reasonable measures
- Force majeure

Natural idea:
Instead of using natural language – use the language of **maths** or **computer science**.

```
function withdraw(uint withdrawAmount) 
    public returns (uint remainingBal) { 
        if (withdrawAmount <= 
            balances[msg.sender]) { 
            balances[msg.sender] -= withdrawAmount; 
            msg.sender.transfer(withdrawAmount); } 
        return balances[msg.sender]; }
```

“**smart contracts**” – contracts **written in a programming language** and **executed automatically** [Nick Szabo, 1990s]
Can it be used for anything?

Lawyers: “smart-contracts are not very useful in law”

But then: where to write smart contracts down? Who should execute them?

answer:

recent idea:

smart contracts are meant for **algorithm-to-algorithm interaction**

this will be done by **blockchain**!

a **distributed trusted “public computer”** (often with its own **“virtual currency”**) first proposed for Bitcoin in 2019 (now used in several other variants)
Huge interest

“blockchain community”

industry

academia

smart contract research at world’s leading universities (Stanford, Berkeley, Princeton, ETH Zurich, …)

Different aspects of smart contracts can be studied.

Focus of PROCONTRA: “smart-contract protocols”
Some parties can be malicious!

Group of connected **parties**.

algorithms or humans

- Some parties can be malicious!
- Group of connected parties.
- **Smart-contract protocols**

algorithms have access to “smart contract platform”

≈ “public computer” that
- can have its own “currency”
- is trusted, but
- **slow, and expensive** to use

S. DZIEMBOWSKI

6

PROCONTRA
Examples of such protocols

One of the first papers on this topic was published by me and my students at IEEE S&P 2014 (Best Paper Award) [301 citations].

probably the most prestigious annual conference in data security

“plasma”

decentralized exchanges

“truebit”

payment channels

“arbitrum”

contingent payments

state channels

rollups

Many of them developed over the last 2-3 years (often by practitioners in so-called “white papers”).
Goals of this project
The first **main goal of this project**

Build foundations of this area, using **methods of theoretical computer science and cryptography**:

- formal definitions
- security proofs
- impossibility results

“provable”

de facto standard in cryptography

(proofs are needed since there is no “experimental evidence” of security)
Second main goal

Improve existing protocols and propose new ones using tools from theoretical cryptography.

The proposal lists 9 new ideas for this.

- Dealing with non-uniquely attributable faults
- Multiparty scriptless scripts
- Adding privacy to Plasma-like schemes
- Watchtowers for off-chain protocols
- Adding privacy to channel protocols
- MPCs with state channel networks
- More likely to be discovered during execution of the project.
Icons made by Freepik, Linector, monkik, Chanut, and Vectors Market.