Pierwszy kwantowy obraz próbki biologicznej

Drukuj

Rozdzielczość jest jednym z kluczowych parametrów technik mikroskopowych. Naukowcy z Instytutu Naukowego Weizmanna w Izraelu oraz Wydziału Fizyki Uniwersytetu Warszawskiego zaproponowali i zademonstrowali nową metodę mikroskopii – Quantum Image Scanning Microscopy. Jest to pierwsze wykorzystanie kwantowych własności światła fluorescencji do obrazowania próbek biologicznych. Zastosowanie Q-ISM prowadzi do istotnej poprawy rozdzielczości otrzymywanych obrazów względem standardowych metod.

Mikroskop optyczny umożliwia tworzenie powiększonych obrazów badanych przedmiotów, co czyni go jednym z podstawowych narzędzi nauk przyrodniczych. Biologów często interesują obserwacje bardzo małych obiektów, nawet mniejszych niż mikrometr. Tymczasem rozdzielczość klasycznego mikroskopu jest ograniczona – obiekty będące bliżej niż połowa długości fali światła (ok. 250 nm dla światła zielonego) przestają być rozróżnialne.

 

Jedną z podstawowych technik mikroskopowych używanych w naukach przyrodniczych jest mikroskopia fluorescencyjna. Wykorzystuje ona specjalne znaczniki, takie jak białko zielonej fluorescencji (green fluorescent protein, GFP), za którego odkrycie i badanie przyznano w 2008 roku Nagrodę Nobla w dziedzinie chemii. Użycie znaczników fluorescencyjnych pozwala obserwować wyłącznie interesujące części badanego obiektu. Jak się okazuje, umiejętne wykorzystanie własności znaczników fluorescencyjnych pozwala też przekroczyć ograniczenia rozdzielczości w klasycznej mikroskopii, za co również przyznano Nagrodę Nobla w dziedzinie chemii w roku 2014.

 

Obecnie istnieje wiele technik pozwalających ominąć ograniczenie dyfrakcyjne, z którego wynika ograniczona rozdzielczość mikroskopu optycznego. Jedną z nich jest mikroskopia konfokalna, w której obraz powstaje poprzez przeskanowanie obiektu i rejestrację natężeń w każdym punkcie skanu za pomocą detektora bez rozdzielczości przestrzennej (np. 1 piksela kamery). Zmniejszając rozmiar detektora, można poprawić rozdzielczość kosztem ilości zarejestrowanego światła, w praktyce uzyskując rozdzielczość ok. 1,5 raza większą niż w klasycznym mikroskopie. Mikroskop konfokalny można zmodyfikować, zastępując pojedynczy detektor wieloma detektorami małych rozmiarów. Dzięki temu uzyskuje się wiele przesuniętych względem siebie obrazów o wyższej rozdzielczości, które następnie nakłada się na siebie. Ta metoda, nazwana Image Scanning Microscopy (ISM) pozwala uzyskać obraz o wyższej rozdzielczości bez zbędnej utraty sygnału, w przeciwieństwie do mikroskopu konfokalnego, w którym poprawa rozdzielczości jest uzyskiwana kosztem poziomu sygnału.

 

Naukowcy z Instytutu Naukowego Weizmanna w Izraelu oraz Wydziału Fizyki Uniwersytetu Warszawskiego zaproponowali i zademonstrowali nową metodę nazwaną Quantum Image Scanning Microscopy (Q-ISM), opartą na połączeniu ISM oraz mikroskopii korelacji kwantowych i łączącą zalety obu technik. Rejestracja informacji o brakujących parach wymaga detektorów zdolnych do wykrywania pojedynczych fotonów, których nie wykorzystywano dotychczas w standardowym ISM. Mikroskopia korelacji kwantowych liczy brakujące pary fotonów w każdym punkcie skanu przy pomocy detektora bez rozdzielczości przestrzennej. Zastosowanie wielopikselowego detektora oraz adaptacja metody analizy danych do mikroskopii korelacji kwantowych umożliwiła pomiary korelacji w przestrzeni, zwiększając rozdzielczość układu.

 

“Super-resolution enhancement by quantum image scanning microscopy”
Ron Tenne, Uri Rossman, Batel Rephael, Yonatan Israel, Alexander
Krupinski-Ptaszek, Radek Lapkiewicz, Yaron Silberberg & Dan Oron,
„Nature Photonics” (2018)

Więcej informacji na temat rozwiązań opisanych w powyższym artykule naukowym znajduje się tutaj.